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Abstract

Chronic Kidney disease (CKD) is an important yet under-recognized contributor to morbidity

and mortality globally. Machine-learning (ML) based decision support tools have been

developed across many aspects of CKD care. Notably, algorithms developed in the predic-

tion and diagnosis of CKD development and progression may help to facilitate early disease

prevention, assist with early planning of renal replacement therapy, and offer potential clini-

cal and economic benefits to patients and health systems. Clinical implementation can be

affected by the uncertainty surrounding the methodological rigor and performance of ML-

based models. This systematic review aims to evaluate the application of prognostic and

diagnostic ML tools in CKD development and progression. The protocol has been prepared

using the Preferred Items for Systematic Review and Meta-analysis Protocols (PRISMA-P)

guidelines. The systematic review protocol for CKD prediction and diagnosis have been reg-

istered with the International Prospective Register of Systematic Reviews (PROSPERO)

(CRD42022356704, CRD42022372378). A systematic search will be undertaken of

PubMed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web

of Science, and the IEEE Xplore digital library. Studies in which ML has been applied to pre-

dict and diagnose CKD development and progression will be included. The primary outcome

will be the comparison of the performance of ML-based models with non-ML-based models.

Secondary analysis will consist of model use cases, model construct, and model reporting

quality. This systematic review will offer valuable insight into the performance and reporting

quality of ML-based models in CKD diagnosis and prediction. This will inform clinicians and

technical specialists of the current development of ML in CKD care, as well as direct future

model development and standardization.
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Introduction

Chronic kidney disease (CKD) is an important non-communicable disease that contributes to

significant morbidity and mortality on a global scale, directly or through cardiovascular dis-

eases attributable to impaired kidney function. Its estimated prevalence ranges from 9.1 to

15.1%. It has increased by 29.3% since 1990 due to the increase in the major chronic diseases

that contribute to its development, notably diabetes mellitus and hypertension [1, 2]. Never-

theless, CKD is underrecognized by patients, clinicians, and health authorities. The disease

often progresses insidiously to end-stage kidney disease (ESKD) with late presentation of

symptoms and signs [3, 4]. The life-sustaining treatment for ESKD, renal replacement therapy,

poses a significant economic burden on patients and health systems, meaning that currently,

an estimated 47 to 73% of individuals are unable to receive it, leaving around 2.3 million indi-

viduals dying prematurely [5]. Strategies to prevent or delay CKD onset and progression can

potentially lower overall morbidity and mortality while minimizing cost.

Machine Learning (ML), a subset of artificial intelligence (AI), has seen exponential growth

across healthcare [6, 7]. ML utilizes a specific dataset to generate an algorithm that employs

unknown or varied combinations of complex features and weights to predict the outcome of

future inputs [8]. ML-based decision support tools have been developed across many aspects

of CKD care across disease prevention, diagnosis, and treatment [7], fuelled by the growth in

volume and variety of big data in nephrology and healthcare in general [9, 10]. Notably, algo-

rithms developed in the prediction and diagnosis of CKD development and progression to

ESKD may help to facilitate early disease prevention, assist with early care planning, and allo-

cate resources for the most significant clinical benefit [11–15].

Despite the growing promise of ML, several factors can hinder its clinical uptake. These

include uncertainty surrounding the performance of ML and the methodological rigor behind

its development. Non-ML-based prediction tools for CKD progression and prognosis have

been developed and validated, such as the Kidney Failure Risk Equation, which has been used

clinically to guide referrals to multidisciplinary CKD clinics [16–18]. Comparisons have been

made between ML and non-ML-based prediction tools in general, specifically to chronic dis-

eases and prediction of acute kidney injury, which found similar performance between predic-

tion models developed with ML and conventional logistic regression (LR) techniques [19–21].

In addition, previous studies have questioned the reporting quality and methodology of CKD

prediction models [22, 23], as well as other AI-based models in imaging [24], oncology [25],

and COVID-19 [26].

This systematic review aims to provide a comprehensive, in-depth summary and evaluation

of ML-based diagnostic and prognostic tools for CKD development and progression, which

will help to better direct future research strategy and methodology in developing ML algo-

rithms in CKD care.

The proposed systematic review aims to answer the following questions:

1. How do ML-based prediction tools in CKD development and progression perform com-

pared with tools developed using conventional techniques?

2. What are the use cases and constructs of these prediction tools?

3. How are the methodological characteristics and reporting quality of the ML-based tools?

Materials and methods

The systematic review protocol was registered with the International Prospective Register of

Systematic Reviews (PROSPERO) on 26/09/22 for CKD prediction (CRD42022356704) and
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CKD diagnosis (CRD42022372378). The protocol followed the Preferred Reporting Items for

Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement [27]. The Check-

list for critical Appraisal and data extraction for systematic Reviews of prediction Modelling

Studies (CHARMS) has been used to formulate review questions and data extraction [28].

Study eligibility criteria

Study designs. Any peer-reviewed primary studies which assessed a prediction algorithm

that utilizes ML techniques applied to clinical problems in the prediction and diagnosis of

chronic kidney disease development and progression, including those for CKD screening,

CKD prevention, profiling of biomarkers contributing towards CKD, profiling of risk factors

leading to CKD, estimation of glomerular filtration rate (GFR) and creatinine levels, predic-

tion of occurrence of CKD, prediction of CKD stages, CKD diagnosis, CKD prognostication,

prediction of CKD progression to ESKD and/or requirement for renal replacement therapy,

ESKD diagnosis will be included.

Exclusion criteria are 1) Studies that utilize only image-based inputs as the different model

development processes require alternative extraction and appraisal tools; 2) studies assessing

prediction models of CKD complications other than its progression, including non-exhaustively

anemia, electrolyte disturbances, bone disorders, and cardiovascular events; 3) prediction

model of RRT including non-exhaustively the choice of RRT modalities which are hemodialysis,

peritoneal dialysis, and renal transplantation, and 4) studies reporting only treatment-related

outcomes of CKD such as adverse events, rate of complications, the management of complica-

tions; 5) informal publication types such as case studies, commentaries, letters to the editor, edi-

torials, meeting abstracts, proceeding papers, conference abstracts, protocols, guidelines, and

recommendations; 6) review articles such as narrative review, overview, systematic review,

meta-analysis; 7) studies that include participants< 18 years old; 8) animal studies.

Study participants. Adult humans whose age was equal to or more than 18 years old.

Types of interventions. The studies will present prediction models utilizing ML tech-

niques, including non-exhaustively various regression techniques, decision trees, random for-

ests, support vector machines, K-nearest neighbor, and neural networks, as defined by

individual studies. The models will be for the prediction and diagnosis of chronic kidney dis-

ease development and progression with or without mention of ESKD.

Comparators. We will include studies that compare the performance of ML-based predic-

tion models with those that utilize conventional techniques, including non-exhaustively those that

use logistic regression (including penalized LR), cox regression, Poisson regression, least squares

linear separation, generalized additive models, discriminant analysis, generalized estimation equa-

tions, risk scores, and expert views. Studies that utilize only ML-based tools will also be included.

Study outcomes

Primary outcome.

• Performance comparison of ML-based and non-ML-based prediction tools in CKD develop-

ment and progression

Secondary outcomes.

• ML-based model use case

• Performance of ML-based prediction tool in CKD development and progression

• Stages of model development (internal or external validation or clinical implementation)
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• Model development team specialty and the involvement of model end-user such as clinicians

during model development

• Evidence of model reporting quality description

• Characteristics of the dataset (size of training, validation and testing datasets, source of data-

set, population group, data period, length of follow-up)

• Prediction model construct including ML-based and non-ML based techniques

• Predictor characteristics and selection

• Model outcome characteristics and selection

• Model performance measures used

Information sources and search strategy

We will search through five databases: PubMed, Embase, the Cochrane Central Register of Con-

trolled Trials (CENTRAL), Web of Science, and the IEEE Xplore digital library. The search

strategy is constructed by two health information specialists with systematic review experiences,

combining search terms and subject headings (MeSH) related to "machine learning," "artificial

intelligence," "chronic kidney disease," and "End-stage kidney disease" (See S1 File). PubMed,

Embase (OVID interface, 1947 onwards), Web of Science, and CENTRAL were chosen for their

broad coverage across biomedical, nursing, allied health, and general scientific literature, while

IEEE Xplore was included for coverage of more technical literature in data science. Additional

articles will be retrieved by manually scrutinizing the reference lists of relevant publications.

Study records

Data management. Following database searching, studies will be populated into Covi-

dence systematic review software [29], which will manage study selection and data extraction.

Selection process. We will carry out two stages of screening. After study de-duplication

through Covidence, two reviewers from a team of eight reviewers will screen the titles and

abstracts of potential studies independently. We will eliminate abstracts in the initial screen if

they do not report ML-based prediction models in CKD.

Included studies will undergo full-text review against the full eligibility criteria. Reasons for

exclusion will be recorded for each study. Disagreement between two reviewers at each article

screening and selection stage will be resolved by consensus and a third person if necessary.

The PRISMA 2020 flow diagram will be generated to describe the workflow and identification

of included studies for the systematic review [30].

All reviewers will receive prior training on systematic review methodology, introduction to

machine learning in healthcare and the study protocol including the eligibility criteria from

lead reviewers (FC, PK and KP). Each reviewer will screen with the lead reviewer (FC) for the

initial 20 articles to ensure consistency. Regular team meetings will be held to resolve conflicts

and ensure consistent validity across team members.

Screening Interrater reliability will be calculated in both percentage agreement and Cohen’s

Kappa [31].

Data collection and management. The data extraction form will be designed prospec-

tively before data collection and will be pilot tested and refined. Five members of the reviewer

team who will participate in data extraction process will receive dedicated instructions and

supplementary coding manual with explanations and examples of variables from the lead
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reviewer (FC). During the pilot phase, the reviewer team will independently extract a random

sample of five studies and review inter-rater reliability. Team training and piloting will con-

tinue until a Cohen’s kappa of 0.60 (Moderate) is reached. Two independent reviewers from

the reviewer team will then begin formal extraction process of the following data items based

on items included in the CHARMS checklist: 1) source of data; 2) participant information; 3)

outcome(s) to be predicted; 4) candidate predictors; 5) sample size; 6) Missing data; 7) Model

development; 8) Model performance; 9) Model evaluation; 10) Results (final model presented)

including model performance; 11) interpretation and discussion. In addition, information will

be extracted on the study information (authors, year of publication, study design, journal, con-

tact information, study period, geographical location (area and country), and funding), the

assessment of reporting standards using an objective measure if mentioned in the study, and

any other relevant information. All relevant text, tables, and figures will be examined for data

extraction. Disagreements between the two independent reviewers will be resolved by consen-

sus and a third reviewer if necessary. We will contact the study authors to request incompletely

reported data in included studies. We will conduct analyses using available data if no response

is received within 14 days.

Extraction interrater reliability will be calculated in both percentage agreement and Cohen’s

Kappa [31].

Reporting quality and risk of bias

Reporting quality assessment. We will assess the reporting quality of studies against the

TRIPOD (Transparent reporting of a multivariable prediction model for individual prognosis

or diagnosis) statement, which aims to improve the transparent reporting of prediction model-

ing studies in all medical settings [32].

The TRIPOD statement provides recommendations for reporting studies on developing,

validating, or updating a prediction model. To assess the completeness of reporting amongst

each publication, we will utilize the published "TRIPOD Adherence Extraction Form,"which

evaluates 22 main items deemed essential in evaluating the transparency of prediction model

studies [33]. Each article will only be assessed for items and sub-items that it applies to (devel-

opment, external validation, or incremental value reporting of prediction models) based on

guidance from the adherence form. Each TRIPOD item is given adherence elements to help

evaluate an item. The presence or lack of an adherence element within the article will be

marked down either as a "Yes" or a "No." For a TRIPOD item to receive a score, all adherence

elements must be present. Overall article’s TRIPOD score can be calculated by summing up

adhered TRIPOD items and dividing by the total number of applicable TRIPOD items for that

article. Findings on reporting quality from the TRIPOD adherence extraction will be summa-

rised and graphically presented.

Risk of bias assessment. We will assess the risk of bias (ROB) of studies by applying PRO-

BAST (prediction model risk of bias assessment tool) [34]. PROBAST was developed to assess

ROB and applicability concerns of a study that evaluates (e.g., develops or validates) a multi-

variable diagnostic or prognostic prediction model. Reviewers will assess each study based on

the published "PROBAST Assessment Form" [35]. PROBAST is organized into four domains:

participants, predictors, outcomes, and analysis. A ROB rating (high, low, or unclear) will be

assigned to each domain based on answering signaling questions provided by the PROBAST

assessment form. Signaling questions can be answered as yes, probably yes, no, probably no, or

no information. Based on ROB results from the four domains, an overall ROB rating and pre-

diction model applicability rating will be given to the prediction model following the recom-

mendations in the PROBAST assessment form. A tabular presentation on PROBAST results
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for each study will be available. Results will be summarized and graphically presented for each

domain.

Comments on methodology

Three reviewers from the reviewer team will assess the study quality and risk of bias. To

improve review consistency, reviewers will gain thorough familiarity with the respective expla-

nation and elaboration documents for TRIPOD and PROBAST [36, 37]. During the pilot

phase, the reviewer team will independently review a random sample of five studies and review

inter-rater reliability. Team training and piloting will continue until a Cohen’s kappa of 0.80

(Strong) is reached. Formal assessment of study quality and risk of bias will begin by two

reviewers independently. Disagreements between two reviewers will be resolved by consensus

and a third reviewer.

The interrater reliability of the study quality and risk of bias assessment will be calculated in

both percentage agreement and Cohen’s Kappa [31].

We will contact the author if not enough information is available for assessment. We will

utilize the available data if the authors do not respond for 14 days. We will present reporting

quality and risk of bias assessment in the respective tables.

Data synthesis

Qualitative synthesis. We will summarize and analyze the studies that meet the eligibility

criteria by themes following the primary and secondary outcomes. We will report details of

prediction model performance, comparing ML-based and non-ML-based models, the predic-

tion model use case, choice of predictors and outcomes, ML model construct, prediction

model reporting standard, and risk of bias. In addition, we will analyse the studies and their

results following standard 4.2 –Conduct a qualitative synthesis, chapter four of Finding What

Works in Health Care: Standards for Systematic Review [38], which involves the description of

the clinical and methodological characteristics of individuals studies, including their strength

and weaknesses, and their relevance to the particular populations and clinical settings.

Quantitative synthesis. The studies will likely show significant clinical, methodological

and statistical heterogeneity. We will therefore synthesize data quantitatively in appropriate

subgroups (prediction of CKD development, CKD diagnosis, and prediction of CKD progres-

sion to ESKD), guided by Collins et al 2022 –specific to the conduct of systematic reviews of

prediction models, including the methods for quantitative synthesis [39].

Measure of effect size. Performance measures of the ML algorithms will be recorded,

including AUROC (or c statistics), 2x2 confusion matrix, sensitivity and specificity to summa-

rize discrimination, and observed vs. expected ratio (O:E) to summarize calibration, or any

other measures utilized by individual studies.

Assessment of heterogeneity. We will assess the clinical heterogeneity of studies based on

the ML algorithm use case, the participant characteristics, the predictor choice, and selection.

We will assess the methodological heterogeneity based on the ML algorithm construct regard-

ing the data size, ML technique, and performance measures. We will assess statistical heteroge-

neity using the χ2 test and the I2 statistic. We will consider an I2 value greater than 50%

indicative of substantial heterogeneity.

Quantitative data synthesis. As recommended by Collins et al 2022 [39], random-effects

meta-analysis will be used to summarize estimates of model discrimination and calibration.

In order to compare the performance between ML and non-ML methods, we will utilize

methods described in Christodoulou et al. [40] by analyzing pairwise differences in logit AUR-

OCs between ML-based and non-ML based techniques by random effects modeling by
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DerSimonian and Laird method, either pooled or within subgroups stratified by the risk of

bias, study outcomes, ML techniques. The estimate and the 95% CI will describe the pairwise

differences in logit AUROCs. The average logit(AUC) difference and 95% CI pooled and strat-

ified by the above subgroups will be calculated as an indicator of how prediction models utiliz-

ing ML compare with those utilizing non-ML methods.

The meta-analysis will be performed using Review Manager version 5.4.1 (The Cochrane

Collaboration, The Nordic Cochrane Centre, Copenhagen, Denmark) [41] and Stata [42].

Additional analysis. Further subgroup analyses will be performed to explore possible

sources of heterogeneity based on the following: study quality (risk of bias and reporting qual-

ity assessment), ML techniques, stages of validation, and dataset (stratified as determined by

resulted studies).

We will conduct sensitivity analyses based on study quality, study publication years (strati-

fied by year), study populations, the ML model construct, the ML user case, or any other rele-

vant strata.

Publication bias

A funnel plot will be constructed to assess the risk of publication bias.

Confidence in cumulative evidence

Overall evidence quality will be assessed using The Grade of Recommendations of Assessment,

Development, and Evaluation (GRADE) guidance for assessing strength of evidence for diag-

nostic tests, incorporating domains including the risk of bias, consistency, directness, precision

and publication bias [43]. The overall level of evidence will be summarized into high, moder-

ate, low and very low. The overall grade will start at “high”, a serious concern/high risk of bias

within one domain will result in a deduction in one level.

Systematic review reporting

As ML in CKD is a rapidly developing field, if the number of studies that meet the eligibility

criteria exceeds the capacity to report the study outcomes in one systematic review, the

research team will report diagnostic and prognostic tools as separate systematic reviews to

ensure a clear and focused reporting and appraisal of study outcomes.

Discussion

Artificial intelligence and machine learning have significant potential in modern healthcare.

Specifically, models developed for the prediction and diagnosis of CKD development and pro-

gression can allow for early disease recognition and intervention, which may help to facilitate

early disease prevention and diagnosis, assist with early care planning, and allocate resources

for the most significant clinical and economic benefit.

As the number of algorithms grows exponentially, the focus should direct toward address-

ing the barriers to clinical implementation. This review aims to assess the methodological

rigor of model development and compare ML-based algorithms’ performance with conven-

tional methods. This will inform clinicians and technical specialists of the current development

of ML in CKD care, as well as direct future model development and standardization.
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